Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Platelets ; 33(4): 632-639, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34904525

RESUMO

Platelets and their subcellular components (e.g., dense granules) are essential components in hemostasis. Understanding their chemical heterogeneities at the sub-micrometer scale, particularly their activation during hemostasis and production of platelet-derived extracellular vesicles, may provide important insights into their mechanisms; however, this has rarely been investigated, mainly owing to the lack of appropriate chemical characterization tools at nanometer scale. Here, the use of scanning transmission X-ray microscopy (STXM) combined with X-ray absorption near edge structure (XANES) to characterize human platelets and their subcellular components at the carbon K-edge and calcium L2,3-edge, is reported. STXM images can identify not only the spatial distribution of subcellular components in human platelets, such as dense granules (DGs) with sizes of ~200 nm, but also their granule-to-granule chemical heterogeneities on the sub-micrometer scale, based on their XANES spectra. The calcium distribution map as well as the principal component analysis of the STXM image stacks clearly identified the numbers and locations of the calcium-rich DGs within human platelets. Deconvolution of the carbon K-edge XANES spectra, extracted from various locations in the platelets, showed that amide carbonyl and carboxylic acid functional groups were mainly found in the cytoplasm, while ketone-phenol-nitrile-imine, aliphatic, and carbonate functional groups were dominant in the platelet DGs. These observations suggest that platelet DGs are most likely composed of calcium polyphosphate associated with adenosine triphosphate (ATP) and adenosine diphosphate (ADP), with significant granule-to-granule variations in their compositions, while the cytoplasm regions of platelets contain significant amounts of proteins.


Assuntos
Plaquetas , Cálcio , Plaquetas/metabolismo , Cálcio/metabolismo , Carbono/metabolismo , Carbono/farmacologia , Grânulos Citoplasmáticos/metabolismo , Humanos , Microscopia , Raios X
2.
J Vis Exp ; (164)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33165326

RESUMO

In the field of nanotechnology, analytical characterization plays a vital role in understanding the behavior and toxicity of nanomaterials (NMs). Characterization needs to be thorough and the technique chosen should be well-suited to the property to be determined, the material being analyzed and the medium in which it is present. Furthermore, the instrument operation and methodology need to be well-developed and clearly understood by the user to avoid data collection errors. Any discrepancies in the applied method or procedure can lead to differences and poor reproducibility of obtained data. This paper aims to clarify the method to measure the hydrodynamic diameter of gold nanoparticles by means of Nanoparticle Tracking Analysis (NTA). This study was carried out as an inter-laboratory comparison (ILC) amongst seven different laboratories to validate the standard operating procedure's performance and reproducibility. The results obtained from this ILC study reveal the importance and benefits of detailed standard operating procedures (SOPs), best practice updates, user knowledge, and measurement automation.


Assuntos
Ouro/química , Laboratórios , Nanopartículas Metálicas/química , Água/química , Hidrodinâmica , Tamanho da Partícula , Reprodutibilidade dos Testes
3.
J Synchrotron Radiat ; 27(Pt 3): 720-724, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381773

RESUMO

Whole-mount (WM) platelet preparation followed by transmission electron microscopy (TEM) observation is the standard method currently used to assess dense granule (DG) deficiency (DGD). However, due to the electron-density-based contrast mechanism in TEM, other granules such as α-granules might cause false DG detection. Here, scanning transmission X-ray microscopy (STXM) was used to identify DGs and minimize false DG detection of human platelets. STXM image stacks of human platelets were collected at the calcium (Ca) L2,3 absorption edge and then converted to optical density maps. Ca distribution maps, obtained by subtracting the optical density maps at the pre-edge region from those at the post-edge region, were used to identify DGs based on the Ca richness. DGs were successfully detected using this STXM method without false detection, based on Ca maps for four human platelets. Spectral analysis of granules in human platelets confirmed that DGs contain a richer Ca content than other granules. The Ca distribution maps facilitated more effective DG identification than TEM which might falsely detect DGs. Correct identification of DGs would be important to assess the status of platelets and DG-related diseases. Therefore, this STXM method is proposed as a promising approach for better DG identification and diagnosis, as a complementary tool to the current WM TEM approach.


Assuntos
Plaquetas/metabolismo , Plaquetas/ultraestrutura , Cálcio/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Microscopia Eletrônica de Transmissão , Humanos , Raios X
4.
Small ; 16(21): e1907674, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163679

RESUMO

Understanding the interactions between nanoparticles (NPs) and human immune cells is necessary for justifying their utilization in consumer products and biomedical applications. However, conventional assays may be insufficient in describing the complexity and heterogeneity of cell-NP interactions. Herein, mass cytometry and single-cell RNA-sequencing (scRNA-seq) are complementarily used to investigate the heterogeneous interactions between silver nanoparticles (AgNPs) and primary immune cells. Mass cytometry reveals the heterogeneous biodistribution of the positively charged polyethylenimine-coated AgNPs in various cell types and finds that monocytes and B cells have higher association with the AgNPs than other populations. scRNA-seq data of these two cell types demonstrate that each type has distinct responses to AgNP treatment: NRF2-mediated oxidative stress is confined to B cells, whereas monocytes show Fcγ-mediated phagocytosis. Besides the between-population heterogeneity, analysis of single-cell dose-response relationships further reveals within-population diversity for the B cells and naïve CD4+ T cells. Distinct subsets having different levels of cellular responses with respect to their cellular AgNP doses are found. This study demonstrates that the complementary use of mass cytometry and scRNA-seq is helpful for gaining in-depth knowledge on the heterogeneous interactions between immune cells and NPs and can be incorporated into future toxicity assessments of nanomaterials.


Assuntos
Leucócitos Mononucleares , Nanopartículas Metálicas , Prata , Linfócitos B/efeitos dos fármacos , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , RNA-Seq , Prata/química , Prata/toxicidade , Análise de Célula Única , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...